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Scale-Freeness and Biological Networks
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The notion of scale-freeness and its prevalence in both natural and artificial net-
works have recently attracted much attention. The concept of scale-freeness is enthu-
siastically applied to almost any conceivable network, usually with affirmative con-
clusions. Well-known scale-free examples include the internet, electric lines among
power plants, the co-starring of movie actors, the co-authorship of researchers, food
webs, and neural, protein–protein interactional, genetic, and metabolic networks.
The purpose of this review is to clarify the relationship between scale-freeness and
power-law distribution, and to assess critically the previous related works, especially
on biological networks. In addition, I will focus on the close relationship between
power-law distribution and lognormal distribution to show that power-law distribu-
tion is not a special characteristic of natural selection.
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What is “scale-free”?
Despite the multitude of “scale-free” studies (1–4), the

meaning of “scale-free network” has never been decided
precisely (5). Literally, the expression refers to the topo-
logical invariance of a network structure, no matter how
coarsely it is viewed (6). More specifically, a scale-free
network must have highly connected nodes (i.e., “hubs”)
at its center, and these hubs must include global hubs,
irrespective of the scale of the observed network. For
example, the web pages of internet stores are linked with
pages of their regular customers, which can be consid-
ered (local) hubs. Among such hubs, giant stores like
Amazon and Yahoo function as global hubs; they are
linked with customer pages and local hubs. Intuitively, a
scale-free network exhibits such a self-similar structure
no matter whether it is viewed globally or locally. This
topological perspective (i.e., self-similarity) has often
been overlooked in previous “scale-free” analyses, pre-
sumably because in their seminal work, the originators of
the scale-free phenomenon, Barabási and Albert, used
the word “scale-free” to refer to a network with a power-
law degree distribution (7).

Power-law degree distribution
In a network, the number of links at each node is called

its “degree.” For example, we can say “Amazon and Yahoo
are high-degree nodes on the internet.” Let us consider a
distribution of degrees for the entire network. A lattice
shows a uniform degree distribution, as all nodes have
the same degree. A traditional random network (the
Erdös-Rényi model) exhibits a Poisson-like degree distri-
bution (8). In essence, the current “scale-free” fever is

ing networks show a power-law distribution rather than
a Poisson, Gaussian, or uniform distribution.

The power-law distribution states that the probability
p of an event is an inverse power of its value x, i.e., p ~ x–γ

(γ: constant; “~” denotes “proportional to”). In the mid
20th century, the distribution was made famous by the
work of the linguist George K. Zipf, who reported that the
probability p of the xth most frequently used word is
inversely proportional to its rank x: p ~ x–γ (γ = 1) (9).
Zipf ’s law is confirmed in many natural languages and
also holds for city sizes, firm sizes, or firm incomes in dif-
ferent times and places (10–13). The reason for its con-
vergence to γ = 1 is still under debate.

Interestingly, a power-law distribution has a scale-free
character: from the definition, the relationship between
log p and log x (i.e., on a log-log plot) becomes linear, and
its slope –γ is independent of the scaling of the x-axis. For
a proof, let us denote the scaling of x as x = Ky (K: con-
stant). The relationship between log p and log y remains
linear with a slope –γ.

log p = –γ log x = –γ (log y + log K)

Note, however, that this scale-free character has nothing
to do with network topology, because the power-law dis-
tribution itself does not deal with networks, as in Zipf ’s
law. Only when we say “power-law degree distribution,”
do we start dealing with networks. When the degree dis-
tribution obeys the power law, from the definition, most
nodes have very few links (low degrees), whereas a tiny
fraction of nodes (i.e., hubs) have very many links (large
degrees). This property alone, however, does not imply
the self-similar topology of the network, because we can
arbitrarily swap the links without changing the overall
degree distribution. In fact, it is possible to construct a
self-dissimilar network whose degree distribution obeys
the power law (5). Then why do many researchers
assume that a network is scale-free (i.e., self-similar)
when its degree distribution obeys the power-law? At
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least a part of the reason comes from the assumption that
networks are constructed more or less randomly. When
links are randomly shuffled without changing the power-
law degree distribution, the resulting network is most
likely to exhibit the self-similar property (5). Since many
research reports in biology use convenient computer sim-
ulations where network models are constructed with a
random-number generator (14, 15), their simulation-
results almost always exhibit self-similar structures.

Why the power law?
Even if what biologists observe is not scale-freeness

but power-law distributions only, the initial question
remains unanswered: why is the power law so prevalent
in naturally occurring networks?

Stating the conclusion first, we have not yet discovered
the answer. The natural abundance of the power-law dis-
tribution has been investigated for over a century in wide
areas of research. In 1881, the astronomer/mathemati-
cian Simon Newcomb found that the probability that a
number has the leading digit of d is log10(1 + 1/d) (d =
1,2,…,9); this results if the probability of seeing the
number n is P(number = n) ~ n–γ (γ → +1) (this is known
as the law of Frank Benford, the physicist who independ-
ently discovered and verified the law in 1938) (16, 17). In
1897, the economist Vilfredo Pareto reported that the
number of people with an income equal to x is propor-
tional to its inverse power: P(income = x) ~ x–γ (18). The
current infatuation with the scale-freeness was started
by the physicists Albert-László Barabási and Réka
Albert, who applied the power-law story to the field of
network study (7). The mathematical foundation of the
Barabási-Albert model for the emergence of scale-free
networks (in fact the power-law distribution) is based on
the preferential attachment (“rich gets richer”) principle,
which was originally proposed by the statistician George
U. Yule in 1924 and was later elaborated by the cognitive
scientist Herbert A. Simon (19, 20). Thus, the story is like
folklore that has been retold for over a century.

Lognormal distribution
Theoretically, power-law distribution is closely related

with lognormal distribution (21). A random variable X is
lognormally distributed if log(X) is normally distributed (i.e.,
Gaussian distribution) (22, 23). This distribution arises
from a random, multiplicative process, i.e., a multiplica-
tive version of a random walk by coin-flipping (24). A
more elaborate version is also well-known as the Black-
Scholes model in economics (25). A lognormal distribu-
tion may look like a power-law distribution in that its
log-log plot can become linear for a wide range of x. The
logarithm of the density function of a lognormal distribu-
tion is

log f(x) = –log x – log( ) – 

where µ is the mean and σ the standard deviation. If σ is
sufficiently large, the third term will be almost constant
for small x, and hence the log-log plot becomes linear (21).
The central limit theorem states that the sum of many
independent, identically distributed random variables
shapes a Gaussian distribution. Likewise, the product of

many independent, identically distributed, positive ran-
dom variables shapes a lognormal distribution (24).

This observation implies the natural prevalence of log-
normal distributions around us. Almost all physical and
chemical laws are ruled by multiplication, not by addi-
tion (consider any physical law such as E = MC2). What
mathematics tells us is that many, independent multipli-
cative processes will produce, in their limits, lognormal
distributions. Indeed, in parallel with the Gaussian dis-
tribution, the lognormal distribution has long been used
as an appropriate model for skewed distributions (22).
The law of proportional effect, which produces a lognor-
mal distribution, was first proposed by the astronomer
Jacobus C. Kapteyn in 1903 and established as early as
1931 by the economist Robert Gibrat (26, 27). Thus, while
the lognormal distribution should have become as famil-
iar as the Gaussian distribution, it disappeared from the
standard curriculum of statistics, perhaps because of the
misconception that addition is easier than multiplication.

Assuming that lognormal distributions are prevalent
in nature, it is easy to understand the prevalence of
power-law distributions. Power-law distributions may
arise from lognormal distributions upon small tweaks,
for example, when the data-sampling time is not uniform
(28), or when a lower boundary is put into effect during a
random walk (29). The well-known preferential attach-
ment is regarded as a variant of the latter model (30). In
general, our observation of natural phenomena is rarely
unbiased. Therefore, it is not surprising that biases in
data acquisition make original multiplicative processes
look power-law–like (28).

Application to biological networks
Considering the surprisingly diverse appearance of

both power-law and lognormal distributions, it is more
pragmatic to choose a distribution that produces useful
results depending on the interpretation of networks. It is
futile to focus on one distribution as a universal, natural
principle. The marked difference between the two distri-
butions is that power-law distributions contain many
more large elements than lognormal distributions, a
property is often referred to as “heavy-tailed.” Conse-
quently, the variance is infinite in power-law and finite in
lognormal distributions. As long as we deal with finite
data, infinite variance is unattainable. At the same time,
real-world data usually contain more large elements
than expected from lognormal distributions (22, 28, 31),
and we are torn between the available choices. An easier
way out is lognormal distributions, simply because they
become Gaussian distributions after their logarithm is
taken. For example, almost all microarray analyses use
statistical tests after taking the logarithm of raw gene-
expression data (32), because lognormal distributions are
implicitly assumed for gene expressions (note that almost
all statistical tests assume Gaussian as their background
distributions). If we were to use power-law distributions
instead, we would need to invent necessary statistical
tools accordingly.

Topology is not enough
So far, our discussion has dealt with the degree distri-

bution. In reality, a more important factor is biochemical
function of the network, including dynamics; this also
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has been overlooked in previous “scale-free” analyses. It
is well known in biology that protein-protein, genetic,
and metabolic networks are highly constrained by differ-
ent biological mechanisms; we cannot straightforwardly
conclude the biological importance of hubs only from the
network topology found by comprehensive interaction
data or shared amino acid sequences (33, 34).

For example, metabolic networks exhibit different net-
work properties depending on the interpretation of topol-
ogy. Their scale-freeness (in fact, power-law degree distri-
bution) may be observed if “information transfer” or
“transmission degree of perturbation” between metabo-
lites is under focus (35–38). If biochemical, structural
conversion is considered, which is what biologists usually
do, metabolic pathways are much more constrained than
the underlying network structure and not scale-free (39–
41). Since the functioning pathways are the subset of con-
nected routes in the underlying network, the hubs also
vary, depending on how we view the networks. Pyruvate,
acetyl CoA, and ATP become hubs if the degree of struc-
tural changes is under focus. On the other hand, water,
phosphates, and NAD become hubs if the number of their
occurrences is compared. Such discrimination requires a
detailed analysis of molecular structures (40, 42), and
similar efforts would be required to assess the function-
ing network of proteins or genes.

Conclusion
If the biological meaning of networks is overlooked,

discussion on the degree distribution of biological net-
works is futile. Since the emergence of power-law distri-
bution is not special, care must be taken in assessing the
biological implication of the “scale-free” conclusions. It is
arguable whether hubs are biologically important or evo-
lutionarily ancient. This short review could not cover
other interesting properties of scale-free networks such
as “small world,” “robustness under random failure” or
“preservation under random rewiring.” For further read-
ing, we recommend the article by Mitzenmacher (21),
which describes the research history of power-law and
lognormal distributions, and the review by Li et al. (5),
which critically overviews the current understanding on
scale-freeness and proposes its mathematically rigorous
definition.
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